385 research outputs found

    A Discrimination Method for Landmines and Metal Fragments Using Metal Detectors

    Get PDF
    While discrimination methods for distinguishing between real mines and metal fragments would greatly increase the efficiency of demining operations, no practical solution has been implemented yet. A potentially efficient method for the discrimination of metallic targets using metal detectors uses a high-precision robotic manipulator to scan the minefield. Further field research is needed, however, before this method can deploy for operational use

    The effect of pCO2 on size-fractionated phytoplankton community in the Southern Ocean

    Get PDF
    第3回極域科学シンポジウム 横断セッション「南極海季節的海氷域における生物地球化学」11月26日(月) 統計数理研究所 セミナー

    Heterochrony and developmental modularity of cranial osteogenesis in lipotyphlan mammals

    Get PDF
    Background Here we provide the most comprehensive study to date on the cranial ossification sequence in Lipotyphla, the group which includes shrews, moles and hedgehogs. This unique group, which encapsulates diverse ecological modes, such as terrestrial, subterranean, and aquatic lifestyles, is used to examine the evolutionary lability of cranial osteogenesis and to investigate the modularity of development. Results An acceleration of developmental timing of the vomeronasal complex has occurred in the common ancestor of moles. However, ossification of the nasal bone has shifted late in the more terrestrial shrew mole. Among the lipotyphlans, sequence heterochrony shows no significant association with modules derived from developmental origins (that is, neural crest cells vs. mesoderm derived parts) or with those derived from ossification modes (that is, dermal vs. endochondral ossification). Conclusions The drastic acceleration of vomeronasal development in moles is most likely coupled with the increased importance of the rostrum for digging and its use as a specialized tactile surface, both fossorial adaptations. The late development of the nasal in shrew moles, a condition also displayed by hedgehogs and shrews, is suggested to be the result of an ecological reversal to terrestrial lifestyle and reduced functional importance of the rostrum. As an overall pattern in lipotyphlans, our results reject the hypothesis that ossification sequence heterochrony occurs in modular fashion when considering the developmental patterns of the skull. We suggest that shifts in the cranial ossification sequence are not evolutionarily constrained by developmental origins or mode of ossification

    Effects of increased pCO2 and iron availability on phytoplankton assemblages in the Southern Ocean

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IB1] 海氷域における生物地球化学的研究11月17日(火) 統計数理研究所 セミナー室1(D305

    Transcriptome profile analysis of flowering molecular processes of early flowering trifoliate orange mutant and the wild-type [Poncirus trifoliata (L.) Raf.] by massively parallel signature sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After several years in the juvenile phase, trees undergo flowering transition to become mature (florally competent) trees. This transition depends on the balanced expression of a complex network of genes that is regulated by both endogenous and environmental factors. However, relatively little is known about the molecular processes regulating flowering transition in woody plants compared with herbaceous plants.</p> <p>Results</p> <p>Comparative transcript profiling of spring shoots after self-pruning was performed on a spontaneously early flowering trifoliate orange mutant (precocious trifoliate orange, <it>Poncirus trifoliata</it>) with a short juvenile phase and the wild-type (WT) tree by using massively parallel signature sequencing (MPSS). A total of 16,564,500 and 16,235,952 high quality reads were obtained for the WT and the mutant (MT), respectively. Interpretation of the MPSS signatures revealed that the total number of transcribed genes in the MT (31,468) was larger than in the WT (29,864), suggesting that newly initiated transcription occurs in the MT. Further comparison of the transcripts revealed that 2735 genes had more than twofold expression difference in the MT compared with the WT. In addition, we identified 110 citrus flowering-time genes homologous with known elements of flowering-time pathways through sequencing and bioinformatics analysis. These genes are highly conserved in citrus and other species, suggesting that the functions of the related proteins in controlling reproductive development may be conserved as well.</p> <p>Conclusion</p> <p>Our results provide a foundation for comparative gene expression studies between WT and precocious trifoliate orange. Additionally, a number of candidate genes required for the early flowering process of precocious trifoliate orange were identified. These results provide new insight into the molecular processes regulating flowering time in citrus.</p

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology
    corecore